搜索

x
中国物理学会期刊

(1+1)维广义的浅水波方程的变量分离解和孤子激发模式

CSTR: 32037.14.aps.55.1016

Variable separation solution and soliton excitations of the (1+1)-dimensional generalised shallow water wave equation

CSTR: 32037.14.aps.55.1016
PDF
导出引用
  • 研究(1+1)维广义的浅水波方程的变量分离解和孤子激发模式. 该方程包括两种完全可积(IST可积)的特殊情况,分别为AKNS方程和Hirota-Satsuma方程. 首先把基于Bcklund变换的变量分离(BT-VS)方法推广到该方程,得到了含有低维任意函数的变量分离解. 对于可积的情况,含有一个空间任意函数和一个时间任意函数,而对于不可积的情况,仅含有一个时间任意函数,其空间函数需要满足附加条件. 另外,对于得到的(1+1)维普适公式,选取合适的函数,构造了丰富的孤子激发模式,包括单孤子,正-反孤子,孤子膨胀,类呼吸子,类瞬子等等. 最后,对BT-VS方法作一些讨论.

     

    In this paper, variable separation solution and soliton excitations of the (1+1)-dimensional generalised shallow water wave equation are obtained. This equation includes two special cases which are completely integrable (IST integrable): the AKNS equation and the Hirota-Satsuma equation. Firstly, the variable separation (BT-VS) method based on the Bcklund transformation is extended to this eqaution for deriving VS solutions which include some low dimensional arbitrary functions. In the integrable cases, a space arbitrary function and a time arbitrary function are included. But in the other cases only a time arbitrary function is included and the space function needs to satisfy a specific condition. In addition, for the (1+1)-dimensional universal formula, abundant soliton excitations can be constructed, such as one-soliton, bell-anti-bell soltion, soliton expansion, breather-like, instaton-like. Finally, some discusions are made about the VT-VS method.

     

    目录

    /

    返回文章
    返回