We theoretically studied the properties of the ground state of the parallel-coup led double quantum dot embedded in a mesoscopic ring in the Kondo regime by mean s of the two-impurity Anderson Hamiltonian. The Hamiltonian is solved by means o f the slave-boson mean-field theory. Our results show that when the system goes into the strong coupling regime, two parallel dots can be coupled coherently, wh ich leads to an enhanced Kondo effect and a giant persistent current emerging in this system. This double quantum dot device can be a candidate for future devic e applications.