搜索

x
中国物理学会期刊

考虑量子效应的短沟道MOSFET二维阈值电压模型

CSTR: 32037.14.aps.55.3670

2-D threshold voltage model for short-channel MOSFET with quantum-mechanical effects

CSTR: 32037.14.aps.55.3670
PDF
导出引用
  • 通过数值方法求解泊松方程和薛定谔方程的自洽解,提出了考虑量子效应时不同于经典理论的阈值条件,并得出了精确的一维阈值电压模型,模拟结果与实验十分符合.在此基础上,基于准二维泊松方程,通过考虑短沟道效应和量子效应,建立了较为精确的适合于小尺寸MOSFET的量子修正阈值电压模型,模型同样适用于(超)深亚微米高k栅介质MOSFET电特性的模拟和结构参数的设计.

     

    A threshold condition different from the classical one is proposed for MOSFET with quantum effects, by means of self-consistent numerical solution of the Schrdinger's and Poisson's equations, and thus an accurate 1-D threshold-voltage model is obtained with good agreements between simulated results and measurement data. Based on this 1-D model, an accurate 2-D quantum-modified threshold-voltage model for small-scale MOSFET is developed by solving the quasi-2D Poisson's equation and taking short-channel effects and quantum-mechanical effects into consideration. The model can also be used for simulation of electrical properties and design of structural parameters for deep-submicron MOSFETs with high-k materials as gate dielectric.

     

    目录

    /

    返回文章
    返回