搜索

x
中国物理学会期刊

光纤中变系数非线性Schr?dinger方程的孤子解及其应用

CSTR: 32037.14.aps.55.3805

Soliton solutions for variable coefficient nonlinear Schr?dinger equation for optical fiber and their application

CSTR: 32037.14.aps.55.3805
PDF
导出引用
  • 基于推广的立方非线性Klein-Gordon方程对一般形式的变系数非线性Schrdinger方程进行研究,讨论了无啁啾情形的孤子解,发现了包括亮、暗孤子解和类孤子解在内的一些新的精确解. 同时对基本孤子的色散控制方法进行了简单讨论. 作为特例,常系数非线性Schrdinger方程和两类特殊的变系数非线性Schrdinger方程的结果和已知的形式一致.此外,还研究了一个周期增益或损耗的光纤系统,得到了有意义的结果.

     

    In this paper, the general variable coefficient nonlinear Schrdinger equation for the optical fiber is investigated based on the extended cubic nonlinear Klein-Gordon equation. The soliton solutions under non-chirp case are discussed, and some new exact solutions, including the bright soliton, the dark soliton and the soliton-like solution are obtained. The standard nonlinear Schrdinger equation and four kinds of the variable coefficient nonlinear Schrdinger equation are all corresponding special cases. In addition, some interesting results for the optical fiber system with periodic gain or loss are also obtained.

     

    目录

    /

    返回文章
    返回