搜索

x
中国物理学会期刊

基于补偿型微带谐振单元的一维光子带隙结构

CSTR: 32037.14.aps.55.4176

A compensated compact microstrip resonant cell with photonic band-gap performance

CSTR: 32037.14.aps.55.4176
PDF
导出引用
  • 提出了一种具有光子带隙(PBG)性能的补偿型微带谐振单元(C-CMRC),通过并联两个开路微带线来补偿CMRC结构在低频通带内因为阻抗不平衡而引起的回波损耗,从而减小插入损耗,并且该C-CMRC谐振结构具有更强的慢波效应和更大的禁带宽度.利用该结构谐振单元的慢波效应,设计具有一维PBG性能的低通滤波器,重复周期仅为0.15λg.与普通的0.5λg周期的PBG结构相比,大大减小了电路面积.实际设计、制作和测试了CMRC和C-CMRC两种结构,通过两种结构的测试结果

     

    A compensated compact microstrip resonant cell (C-CMRC) with photonic band-gap (PBG) performance is presented in this paper. Two open microstrip stub-lines are added at the center of the compact microstrip resonant cell (CMRC) to compensate for the unbalanced change of inductance and capacitance in low pass band. It can significantly improve the return loss and insertion loss. Furthermore, the C-CMRC with capacitive loading leads to a stronger slow-wave and enlarged stop-band bandwidth. A low pass filter with 3 C-CMRC resonators in series has been designed according to the PBG performance. The period is only 0.15λg due to the slow-wave effect. Comparison with the general PBG period of 0.5λg, the circuit size is reduced effectively. The original CMRC and the C-CMRC with open stub lines are designed, fabricated and measured to validate the improved performance. A low pass filter with 3 C-CMRC resonators is also designed with 1.26dB insertion loss below 1.8GHz and more than 25dB stop-band from 2.6 to 9GHz.

     

    目录

    /

    返回文章
    返回