搜索

x
中国物理学会期刊

利用杨辉三角形对称性推导高阶运动微分方程

CSTR: 32037.14.aps.55.4991

Yang Hui Triangle symmetry and higher-order differential equations of motion

CSTR: 32037.14.aps.55.4991
PDF
导出引用
  • 利用Mathematica数学软件计算函数r=r(q(t),t)各变量之间偏导和高阶导数的关系,发现具有杨辉三角形对称性.结合杨辉三角形的对称性规律和牛顿第二定律推导出了高阶运动微分方程,并讨论了理想约束系统下的高阶运动微分方程.

     

    In this paper, by using Mathematica software to disclose the relationship between partial derivative and high-order derivative of different variables in the function r=r(q(t),t), the symmetry of Yang Hui Triangle of the function r=r(q(t),t) is discovered. Combining the symmetry of Yang Hui triangle with the Newtonian second law, the high-order differential equations of motion are deduced. Finally the high-order differential equations of systems under ideal constraints are discussed.

     

    目录

    /

    返回文章
    返回