搜索

x
中国物理学会期刊

圆杆波导中的一个非线性波动方程及准确周期解

CSTR: 32037.14.aps.55.628

A nonlinear wave equation and exact periodic solutions in circular-rod waveguide

CSTR: 32037.14.aps.55.628
PDF
导出引用
  • 在小变形条件下,采用Cox的非线性应力应变关系,计及横向Possion效应,借助Hamilton变分原理导出了非线性弹性圆杆波导中的纵向波动方程. 利用Jacobi椭圆余弦函数展开法,对该方程与截断的非线性波动方程进行求解,得到了两类非线性波动方程的准确周期解,它们可以进一步退化为孤波解.

     

    Under the condition of small deformation, a new nonlinear wave equation is derived to describe nonlinear wave evolution in a nonlinear elastic circular rod by means of Hamilton principle. The nonlinear constitutive relationship proposed by Cox and transverse Possion effects are simultaneously taken into account. Nonlinear wave equation and truncated nonlinear wave equation are solved by the Jacobi elliptic cosine function expansion method. The exact periodic solutions of these nonlinear equations are obtained. The limiting conditions of these solutions are also given.

     

    目录

    /

    返回文章
    返回