搜索

x
中国物理学会期刊

外加磁场微波等离子推力器内流场数值模拟

CSTR: 32037.14.aps.55.6494

Numerical simulation of the internal flow in microwave plasma thruster in magnetic field

CSTR: 32037.14.aps.55.6494
PDF
导出引用
  • 为了提高微波等离子推力器性能,改善等离子体对电磁波能量的吸收状况,提高核心区温度,提出外加磁场的方案,并对热等离子体进行了数值模拟.假设局域热平衡条件,采用Navier-Stokes,Maxwell和Saha方程,利用压力修正的半隐格式和时域有限差分求解方法,建立了径向磁镜场下推力器内等离子体流场的数值计算模型.数值模拟结果表明:外加磁场后的磁感应强度小于0.5 T时,推力器内热等离子体核心区最高温度随磁感应强度的增加而迅速提高.外加磁场后的磁感应强度大于0.5 T时,核心区最高温度随磁感应强度的增加而缓慢提高.磁感应强度为0.5 T时,热等离子体核心区最高温度与不加磁场相比提高了24%.外加磁场对等离子体流场速度分布影响不大.

     

    Recent experiments show that the performance of microwave plasma thruster is a little too low because the energy absorbed by plasma depends on the relationship of plasma and microwave frequency. One potential solution is to use external magnetic field to improve the transfer process of microwave in plasma. This paper presents numerical study about how a magnetic field affects the thermal plasma flow field and its temperature in microwave plasma thruster. Out purpose is to see if the magnetic field can enhance the thermal plasma core temperature. Assuming that the plasma within the thruster is under the condition of local thermal equilibrium and the external magnetic fields is uniform, coupled Navier-Stokes, Maxwell and Saha equations are set up to describe the plasma flow under microwave electromagnetic and external magnetic fields. Solving Navier-Stokes equations with semi-implicit method for pressure-linked equations and Maxwell equations with finite-difference time-domain method, the result shows that when the magnetic field intensity is 0.5 T the temperature of plasma core is increased by 24% compared with that at zero magnetic field. Thus the magnetic field improves the performance of microwave plasma thruster.

     

    目录

    /

    返回文章
    返回