搜索

x
中国物理学会期刊

基于遗传算法的统一混沌系统比例-积分-微分神经网络解耦控制研究

CSTR: 32037.14.aps.56.2493

Research on a proportional-integral-derivative neural network decoupling control based on genetic algorithm optimization for unified chaotic system

CSTR: 32037.14.aps.56.2493
PDF
导出引用
  • 提出了采用改进的遗传算法优化比例-积分-微分(PID)神经网络解耦控制器的连接权值,从而实现PID控制器参数的优化及非线性多变量系统的解耦控制. 改进的遗传算法优于基本遗传算法,它使寻优过程中的计算量减少,计算效率提高,收敛速度加快. 将优化后的PID神经网络解耦控制器应用于统一混沌系统的控制中,仿真实验收到良好的控制效果,证明了PID控制器应用于统一混沌系统控制的有效性.

     

    An improved genetic algorithm (IGA) was proposed. It can optimize the proportional-integral-derivative(PID) neural network decoupling controller's connecting weight value, so that it makes the PID controller's parameser to be optimized and realizes the decoupling control of multivariate nonlinearity systems. The IGA is superior to the elementary genetic algorithm. In the PID controller's parameter optimization, the IGA uses less calculations, is more efficient, and faster in convergence. When the optimized PID controller was applied to unified chaoticsystems, good control results were obtained by simulation experimentation, so t was proved that the PID controller when applied to unified chaotic systems wa effective.

     

    目录

    /

    返回文章
    返回