搜索

x
中国物理学会期刊

广义色散Camassa-Holm模型的奇异孤子

CSTR: 32037.14.aps.56.3667

Singular solitons of generalized Camassa-Holm models

CSTR: 32037.14.aps.56.3667
PDF
导出引用
  • 引进一类广义色散Camassa-Holm模型,对其做奇异性分析.通过改进的WTC-Kruskal算法,证明该模型在Painlevé意义下可积,得到了它的一组Painlevé-Bcklund系统和Bcklund变换.应用Maple进行代数运算,得到了丰富的规则(regular)孤子和一类奇异(singular)孤子,扭结(kink)孤子,紧孤子(compacton)和反紧孤子(anti-compacton).特别地,推导出一类在扭结孤子的中间区域包含有一列周期尖点(cuspon)波的奇异结构.在这些规则的孤子系统的基础上,对可积广义系统应用Bcklund变换,得到三类奇异孤子,分别是具有驼峰结构的周期爆破波,具有爆破波结构的扭结孤子和紧孤子.

     

    In this paper we introduce one type of generalized dispersive Camassa-Holm model and make its singularity analysis. We prove that the model is Painlevé integrable by an alternative WTC-Kruskal test and obtain the Painlevé-Bcklund systems and the Bcklund transformation. Many new types of regular soliton, singular soliton, kink soliton, compacton and anti-compacton are explored. Particularly, we have found singular structures of periodic cuspon waves in kink solitons, which occur in their central regions. Based on the regular solitonic system, we do Bcklund transformation and obtain three sorts of singular solitons, namely the periodic blow-up wave with hump structure, kink soliton for the blow-up wave structure and the compacton.

     

    目录

    /

    返回文章
    返回