A method of chaos control using half period delayed-nonlinear feedback based on stability criterion is proposed in present paper. By a suitable separation of chaotic system, a special nonlinear function is obtained. Using the sum of nonlinear function about the chaotic output signal and its half period delayed output signal a continuous feedback input perturbation is constructed. Self-symmetric directly unstable periodic orbits can be stabilized by the method without using any external force. The method retains the advantages of performing the self-control of delay feedback control and overcomes its limitations. Beside, the validity of control is ensured due to the stability criterion. The control can be started at any moment, and it is convenient and flexible. The coupled coupling Duffing oscillator is taken as a numerical example. The results of numerical simulation show the validity of the method.