搜索

x
中国物理学会期刊

储备池状态空间重构与混沌时间序列预测

CSTR: 32037.14.aps.56.43

Reservoir neural state reconstruction and chaotic time series prediction

CSTR: 32037.14.aps.56.43
PDF
导出引用
  • 分析了现有的基于回声状态网络(ESN)的迭代预测方法,指出了该方法在理论上存在的问题以及应用中存在的障碍.提出了一种基于储备池的直接预测方法,该方法利用预测原点和预测时域之间的关系直接构建预测器,因此可以预先对预测器的稳定性施加约束,从而避免了在迭代预测方法中由于网络回路闭合而产生的稳定性问题.在仿真中,首先以Lorenz时间序列为例分析了迭代预测方法在闭合回路前后储备池的变化情况,然后通过Mackey-Glass标杆问题的测试验证了直接预测方法的可行性.

     

    ESN(Echo state network) is a new type of recurrent neural network, which is based on the “reservoir”. ESN has been proved to be significantly efficient to deal with some chaotic time series prediction tasks. This paper makes an analysis of the current iterative prediction method based on “reservoir”, and points out some problems in theory and the obstacles in application. And then, a direct prediction method is proposed, which relates the prediction origin and prediction horizon directly. The direct method does not close the loop in the process of prediction, so there are no such problems as instability and error accumulation. The simulation results show how the reservoir property changes when the loop is closed in the iterative prediction, and then demonstrate the feasibility of the direct prediction method in application to the Mackey-Glass benchmark prediction problem.

     

    目录

    /

    返回文章
    返回