搜索

x
中国物理学会期刊

插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究

CSTR: 32037.14.aps.56.4817

First principles computational study on the stability of Li ion-vacancy two-dimensional ordered structures in intercalation compounds LixTiS2

CSTR: 32037.14.aps.56.4817
PDF
导出引用
  • 根据局域密度近似下的密度泛函理论,用第一性原理方法对TiS2,LiTiS2和LixTiS2(x=1/4, 1/3, 1/2, 2/3, 3/4)有序系统进行了几何优化和总能量计算.将计算结果与已有的实验和理论结果进行了对比,得到的归一化结构参量增量Δa0和Δc0随离子浓度单调地增加,与实验结果符合较好.Li 

    Geometry optimization and total energy computation were carried out for TiS2, LiTiS2 and intercalation compound LixTiS2(x=1/4, 1/3, 1/2, 2/3, 3/4)ordered systems using first principles method based on local density approximation to density-functional theory. The computation results for these systems have been compared with other experimental and theoretical results available in the literature. The normalized increments of lattice parameters Δa0 and Δc0 increase monotonicly with the increasing concentration of Li ion. The curves show good agreement with lattice parameters obtained from experiment. The formation energies of ordered systems LixTiS2(x=1/4, 1/3, 1/2, 2/3, 3/4) are all negative, indicating their stability at low temperature. The formation energy of Li1/2TiS2 system with 3a0×a0 ordered structure is the lowest, implying the most stable structure. The results have shows that the local density approximation to density-functional theory can reasonably be applied to TiS2, LiTiS2 and intercalation compound LixTiS2(x=1/4, 1/3, 1/2, 2/3, 3/4)ordered systems.

     

    目录