搜索

x
中国物理学会期刊

Nd掺杂对Bi4Ti3O12铁电薄膜的微结构和铁电性能的影响

CSTR: 32037.14.aps.56.6084

Effects of neodymium doping on microstructures and ferroelectric properties of bismuth titanate ferroelectric thin films

CSTR: 32037.14.aps.56.6084
PDF
导出引用
  • 利用溶胶-凝胶法在Pt/Ti/SiO2/Si(100)衬底上制备了Nd掺杂Bi4Ti3O12(Bi4-xNdxTi3O12, x=0.00,0.30,0.45,0.75,0.85,1.00,1.50)铁电薄膜样品.研究了Nd掺杂对Bi4Ti3O12薄膜的微结构和铁电性能的影响.研究结果表明:Nd掺杂未改变Bi4Ti3O12薄膜的基本晶体结构.在掺杂量x3+只取代类钙钛矿层中的A位Bi3+.当x=0.45时,样品剩余极化强度达最大值,在270kV·cm-1的电场下为32.7μC·cm-2.掺杂量进一步增加时,结构无序度开始明显增大,Nd3+开始进入(Bi2O2)2+层,削弱其绝缘层和空间电荷库的作用,导致材料剩余极化逐渐下降.当掺杂量x达到1.50时,掺杂离子最终破坏(Bi2O2)2+层的结构,材料发生铁电-顺电相变.

     

    The Bi4-xNdxTi3O12(x=0.00,0.30,0.45,0.75,0.85,1.00,1.50) ferroelectric thin films were prepared on the Pt/Ti/SiO2/Si(100) substrates using sol-gel method. The effect of neodynium doping on the microstructures and ferroelectric properties of films were studied. The experimental results show that Nd3+ only substitutes Bi3+ in the pseudo-perovskite block when Nd content x is lower than 0.45. When Nd content x is about 0.45, the film has the largest remnant polarization (2Pr) of 32.7μC·cm-2 at an applied field of about 270kV·cm-1. At x>0.45, part of Nd ions are incorporated into the (Bi2O2)2+block, which would change the microstructure of (Bi2O2)2+ block and weaken its functions as the insulating layer and the space charge storage, resulting in the decrease of the 2Pr. When x=1.50, the dopout would destroy the structure of (Bi2O2)2+ block, which leads to ferroelectric-paraelectric phase transition of the film.

     

    目录

    /

    返回文章
    返回