搜索

x
中国物理学会期刊

事件空间中力学系统的微分变分原理

CSTR: 32037.14.aps.56.655

Differential variational principles of mechanical systems in the event space

CSTR: 32037.14.aps.56.655
PDF
导出引用
  • 研究事件空间中力学系统的微分变分原理.基于D'Alembert原理,建立了事件空间中力学系统的D'Alembert-Lagrange原理、Jourdain原理、Gauss原理和万有D'Alembert原理,给出了这些原理的Euler-Lagrange参数形式、Nielsen参数形式和Appell参数形式,并导出了万有D'Alembert原理的Mangeron-Deleanu参数形式.

     

    In this paper, the differential variational principles of mechanical systems in the event space are studied. The D'Alembert-Lagrange principle, the Jourdain principle, the Gauss principle and the universal D'Alembert principle in the event space are established on the basis of the D'Alembert principle of the system. The parametric forms of Euler-Lagrange, Nielsen and Appell for these principles are given, and the parametric form of Mangeron-Deleanu for the universal D'Alembert principle is deduced.

     

    目录

    /

    返回文章
    返回