搜索

x
中国物理学会期刊

(2+1)维非对称 Nizhnik-Novikov-Veselov系统的新映射解及其局域结构

CSTR: 32037.14.aps.56.6784

New mapping solutions and localized structures for the (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov system

CSTR: 32037.14.aps.56.6784
PDF
导出引用
  • 映射法是一种非常经典、有效和成熟的求解非线性演化方程的方法,其最大的特点是可以有多种不同形式的设解,使得最终求得的解丰富多彩. 利用改进的 Riccati 方程映射法和变量分离法,得到了(2+1)维非对称 Nizhnik-Novikov-Veselov 系统的新显式精确解.根据得到的孤波解,构造出该系统的峰孤子和分形孤子等局域结构,研究了两个孤立波的“追碰”现象.

     

    The mapping approach is a kind of classic, efficient and well-developed method to solve nonlinear evolution equations. Its remarkable characteristic is that we can have infinitely different ansatzs and thus end up with the abundance of solutions. By an improved mapping approach and a variable separation method, a series of excitations of the (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov system is derived. Based on the derived solitary wave excitation, we obtain some special localized structures such as peakon solitons and fractal solitons, then we discuss the phenomenon of “chase and collision”.

     

    目录

    /

    返回文章
    返回