-
通过引入耦合的Riccati方程组得到一个构造非线性微分-差分方程精确解的代数方法.作为实例,将该方法应用到了一般格子方程,相对论的Toda格子方程和(2+1)维Toda格子方程.借助符号计算软件Mathematica,获得了这些方程的扭结型孤波解和复数解.该方法也适合求解其他非线性微分-差分方程的精确解.
-
关键词:
- 耦合Riccati方程组 /
- 格子方程 /
- 相对论的Toda格子方程 /
- (2+1)维Toda格子方程
An algebraic method to construct the exact solutions of nonlinear differential-difference equations is presented by introducing the coupled Riccati equations. As an example, we apply this method to the general lattice equation, the relativistic Toda lattice equations and the (2+1) dimensional Toda lattice equation. Some kink solitary wave solutions and complexiton solutions are obtained with the help of symbolic system Mathematica. Our method can also be applied to other nonlinear differential-difference equations.-
Keywords:
- coupled Riccati equations /
- lattice equation /
- relativistic Toda lattice equations /
- (2+1)dimensional Toda lattice equation







下载: