搜索

x
中国物理学会期刊

基于遗传小波神经网络的机器人腕力传感器动态建模研究

CSTR: 32037.14.aps.57.3385

Research on the dynamic modeling based on genetic wavelet neural network for the robot wrist force sensor

CSTR: 32037.14.aps.57.3385
PDF
导出引用
  • 提出一种基于改进遗传算法进化小波神经网络用于机器人腕力传感器动态建模的新方法,介绍了该算法原理.该方法利用腕力传感器的动态标定数据,用改进的遗传算法来优化小波神经网络结构和参数,建立腕力传感器的动态模型.结果表明,采用遗传小波神经网络进行腕力传感器动态建模,能克服误差反向传播算法存在易陷入局部极小点的缺点,网络的复杂度、收敛性和泛化能力得到了好的综合,建模的速度和精度得到提高.

     

    A kind of new dynamic modeling method is presented based on improved genetic algorithm (IGA) and wavelet neural networks (WNN) and the algorithm is applied to a new type of robot wrist force sensor. The dynamic model of the wrist force sensor is set up according to data of the dynamic calibration, where the structure and parameters of wavelet neural networks of the dynamic model are optimized by genetic algorithm. The results show that the proposed method can overcome the shortcoming of easy convergence to the local minimum points of BP algorithm, and the network complexity, the convergence and the generalization ability are well compromised and the speed and precision of modeling are increased.

     

    目录

    /

    返回文章
    返回