搜索

x
中国物理学会期刊

大功率GaN基发光二极管等效串联电阻的功率耗散及其对发光效率的影响

CSTR: 32037.14.aps.57.477

The power dissipation of equivalent series resistance and its influence on lumen efficiency of GaN based high power light-emitting diodes

CSTR: 32037.14.aps.57.477
PDF
导出引用
  • 由于自加热效应的存在,大功率GaN基发光二极管(LED)的芯片温度有可能高出环境温度很多,实验中,芯片温度超出环境高达147 K.从实验测量的大功率LED电流电压特性曲线中,将p-n结和等效串联电阻上的电压降落分离出来,得到了大功率LED等效串联电阻随芯片温度的变化情况.在输入电功率自加热效应的影响下,大功率GaN基LED等效串联电阻呈现出剧烈的变化,其阻值由低输入功率时的1.2 Ω降低到0.9 Ω,然后再升高到1.9 Ω,等效串联电阻的功率耗散在输入功率中所占的比例也随着输入功率的增加迅速增加,最高时接

     

    Because of the self-heating effect of InGaN based high power light-emitting diodes (LEDs), the temperature of the LED chip is much higher than the case temperature (TC). The maximum Tj in our experiment is 148K higher above the case temperature. The voltage drops on p-n junction and equivalent series resistance are extracted from the measured I-V curve, and then the values of equivalent series resistance at different forward power are obtained. Due to the self-heating effect, the values of equivalent series resistance show a very strong forward power-dependent characteristics, the maximum equivalent series resistance reported in this paper is about 1.9Ω at high forward power, being more than twice the minimum value. The power dissipation of equivalent series resistance is increased sharply when the forward power is increased, nearly half of the forward electrical power was dissipated on equivalent series resistance at high power, and it becomes the an important factor restraining the lumen efficiency of high power GaN based light emitting diodes.

     

    目录

    /

    返回文章
    返回