搜索

x
中国物理学会期刊

势问题的无单元Galerkin方法的误差估计

CSTR: 32037.14.aps.57.6037

Error estimates of element-free Galerkin method for potential problems

CSTR: 32037.14.aps.57.6037
PDF
导出引用
  • 在高维情况下,首先研究了无单元Galerkin方法的形函数构造方法——移动最小二乘法在Sobolev空间Wk,p(Ω)中的误差估计.然后,在势问题的无单元Galerkin方法的基础上,研究了势问题的通过罚函数法施加本质边界条件的无单元Galerkin方法在Sobolev空间中的误差估计.当节点和形函数满足一定条件时,证明了该误差估计是最优阶的.从误差分析中可以看出,数值解的误差与权函数的影响半径密切相关.最后,通过算例验证了结论的正确性.

     

    The error estimates for moving least-square approximation, which is the method for obtaining the shape function in element-free Galerkin method, are presented in Sobolev space Wk,p(Ω) for high dimensional problems. Then on the basis of element-free Galerkin method for potential problems, the error estimates for element-free Galerkin method for potential problems, in which the essential boundary conditions are enforced by penalty methods, are obtained. The error estimates we present in this paper have optimal order when the nodes and shape functions satisfy certain conditions. From the error analysis, it is shown that the error bound of the potential problem is directly related to the radii of the weight functions. Two numerical examples are also given to verify the conclusions in this paper.

     

    目录

    /

    返回文章
    返回