搜索

x
中国物理学会期刊

关于非线性系统两类广义混沌同步存在性的研究

CSTR: 32037.14.aps.57.6086

The existence of two types of generalized synchronization of nonlinear systems

CSTR: 32037.14.aps.57.6086
PDF
导出引用
  • 研究了非线性系统两类广义混沌同步的存在性.即在响应系统的修正方程在具有渐近稳定平衡点或渐近稳定周期轨道的情况下,满足一定的条件,可将广义同步化流形存在性问题转化为Lipschitz函数族的压缩不动点问题,理论上严格证明了该广义同步化流形的指数吸引性.数值仿真证实了理论的正确性及有效性.

     

    The existence of two types of generalized synchronization of chaotic nonlinear systems is studied. When the modified system collapses to a stable equilibrium or periodic oscillation, the existence of generalized synchronization can be converted to the problem of compression fixed point under certain conditions. Strict theoretical proofs are given to the exponential attractive property of generalized synchronization manifold. Numerical simulations illustrate the correctness of the present theory.

     

    目录

    /

    返回文章
    返回