Using self-consistent field calculation, the new equilibrium morphology of a diblock copolymer melt confined in a brush_covered cylindrical nanopore can be found. The morphology is formed as a function of brush density and A-monomer fraction f. When f=0.7, due to the wetting effect produced by polymer brush the outside concentric lamellar ring will come up again with increasing φAB. We carefully examined the intermediate phases and discovered a rich variety of new two_dimensional structures that have no analogue in the unconfined system, which include nonhexagonally coordinated cylinder phases and structures intermediate between lamellae and cylinders, like CRCR, when f=0.35. Then we map the stability regions and phase boundaries for all the structures we found.