搜索

x
中国物理学会期刊

利用空间点过程提取丛集点算法的适用性研究

CSTR: 32037.14.aps.58.2097

Research on the validility of cluster delineation based on spatial point processes

CSTR: 32037.14.aps.58.2097
PDF
导出引用
  • 以二维泊松过程理论为基础,结合空间点过程理论,引入k阶最近邻距离的概念,介绍了基于k阶最近距离的丛集点的提取算法,对该算法的适用范围进行了讨论和分析,发现丛集区域和背景区域疏密程度差异以及所研究的数据点数目对该方法有影响,疏密程度差异较小时,该算法的有效性不强,疏密程度差异较大时,该算法较为适用,同时,数据点的总数不同时,算法的适用范围有所差异,但差异不大.此外,引入权重的思想,对算法中理想数据点的设置进行了一定程度的拓展,将所研究区域内的数据点赋予不同的权重,进行丛集数据点的提取,从而扩展了该算法的使用范围.

     

    On the basis of the two-dimensional Poisson process theory and spatial point process theory, we introduced the algorithm of cluster extraction which is based on k-th order distance, aiming at determining the valid range of the algorithm. We found that the ratio of cluster and cluster's densities and the number of data both have effect on the method. But the effect of the former much bigger than that of the latter. Furthermore, we introduced the concept of weight to extend the range of the simulated data, and gave the data different weights for delineating clusters, so that the range of this algorithm can be extended.

     

    目录

    /

    返回文章
    返回