搜索

x
中国物理学会期刊

基于拓扑结构的碱金属化合物摩尔磁化率的支持向量回归研究

CSTR: 32037.14.aps.58.272

Topological research on the molar magnetic susceptibility of alkali metal compounds with support vector regression

CSTR: 32037.14.aps.58.272
PDF
导出引用
  • 基于经典电动力学导出的表征简单离子磁化率的磁性点价gi所构建的分子磁性连接性指数?mF及45种碱金属化合物的摩尔磁化率χm的实测数据集,利用粒子群寻优的支持向量回归(SVR)方法,建立了基于0F和1F的碱金属化合物χm的预测模型,并与基于多元线性回归(MLR)模型的计算结果进行了比较.结果显示,基于9次交叉验证的SVR模型预测的平均绝对误差、平均相对误差绝对值以及均方根误差均比MLR模型小,表明SVR模型的回归预测能力优于MLR.研究表明,磁性连接性指数mF是一种合适的分子描述符,SVR是一种预测碱金属化合物χm的有效方法.

     

    According to the experimental dataset on the molar magnetic susceptibility χm of 45 alkali metal compounds and the topological descriptor?——magnetic connectivity index mF, which is extracted by the magnetic valence gi of simple ion deduced from classical electrodynamics, support vector regression (SVR) combined with particle swarm optimization for its parameter optimization is proposed to establish a model for predicting the molar magnetic susceptibility of alkali metal compound via 0F and 1F. The performance of SVR model is compared with that of multivariate linear regression (MLR) model. The results show that the mean absolute error, the mean absolute percentage error and the root mean square error for 9-fold cross validation test of SVR models are all smaller than those achieved by MLR models. It is revealed that the generalization ability of SVR model is superior to that of MLR model. This study suggests that magnetic connectivity index is an effective descriptor and the SVR is a powerful approach to the prediction of the molar magnetic susceptibility of alkali metal compounds.

     

    目录

    /

    返回文章
    返回