搜索

x
中国物理学会期刊

强制对流和自然对流作用下枝晶生长的数值模拟

CSTR: 32037.14.aps.58.285

Modelling of dendritic growth in forced and natural convections

CSTR: 32037.14.aps.58.285
PDF
导出引用
  • 建立了一个基于格子玻尔兹曼方法 (LBM) 的二维模型,对强制对流和自然对流作用下合金凝固过程中的枝晶生长行为进行了模拟研究. 与传统的基于求解Navier-Stokes方程计算流场的方法不同,本模型采用基于分子动理论的LBM对凝固过程中的传输现象进行数值计算. 用三组粒子分布函数分别建立了计算流场、由对流和扩散所控制的浓度场和温度场的LBM演化方程. 通过求解LBM演化方程获得固/液界面前沿的浓度和温度分布. 然后,基于溶质平衡方法计算了枝晶生长的驱动力. 为了对模型进行验证,将模拟在强制和自然对流作用下枝晶上游尖端的稳态生长特征分别与Oseen-Ivantsov 解析解和修正的Lipton-Glicksman-Kurz 模型预测结果进行了比较, 模拟结果和理论预测结果符合良好. 模拟结果还表明,对流使热量和溶质从上游传输到下游,从而加速了枝晶在上游方向的生长,而抑制了下游方向的生长,形成了非对称的枝晶形貌.

     

    A two-dimensional lattice Boltzmann method (LBM) based model is developed for the modelling of dendritic growth during alloy solidification in the presence of forced and natural convections. Instead of conventional continuum-based Navier-Stokes solvers,the present model adopts a kinetic-based LBM for the numerical computations of transport phenomena during solidification. Three sets of distribution functions are employed to constitute the LBM evolution equations for numerically calculating fluid flow as well as solutal and thermal transports which are controlled by both diffusion and convection. By solving the LBM evolution equations, the local temperature and the composition at the solid/liquid interface can be obtained. The kinetics of dendritic growth is then investigated based on a solutal equilibrium approach proposed by Zhu and Stefanescu. The model is verified by the comparison between the simulations and theoretical predictions. The simulated upstream tip velocities and radii of the dendrite growing in a melt with natural convections are found to be in reasonabl agreement with the predictions from the modified Lipton-Glicksman-Kurz model that takes into account the effects of convection. For the convective dendritic growth in a forced flow, the simulated growth Pclet number of the upstream tip as a function of the flow Pclet number is very close to the Oseen-Ivantsov solution. It is also found that convection transports heat and solute from the upstream region to the downstream region, producing asymmetrical dendrite that grows faster in the upstream direction, whereas slower in the downstream direction.

     

    目录

    /

    返回文章
    返回