搜索

x
中国物理学会期刊

Ca,Be在镁合金中的阻燃作用

CSTR: 32037.14.aps.58.3315

The ignition-proof effect of Ca and Be in Mg alloys

CSTR: 32037.14.aps.58.3315
PDF
导出引用
  • 建立了镁合金的晶体,液态及其固/液界面模型.采用递归法计算了Ca,Be在α-Mg、固/液界面、镁液态中的环境敏感镶嵌能,定义并计算了Mg,Ca及Be与氧的原子亲和能.计算结果表明:Ca,Be在镁晶体中的环境敏感镶嵌能较高,不能稳定固溶于晶体中,因此在固体中的溶解度较小.合金凝固时Ca,Be扩散到环境能较低的液体中,向液面聚集.由于Ca,Be与氧的原子亲和能低于镁与氧的亲和能,聚集在液体表面的Ca,Be将优先与氧结合,生成致密的镁与合金元素的混合氧化物,阻止镁合金燃烧.

     

    The atomic cluster models of α-Mg,liquid Mg and the interface between liquid/solid have been founded. The environment-sensitive embedding energy of Ca and Be in α-Mg,liquid Mg,liquid/solid interface has been calculated by recursion method. The atomic affinity energy between Mg,Ca,Be with O has been defined and calculated. The calculated results show that the solid solubility of Ca and Be is very small in α-Mg,because of their higher environment-sensitive embedding energy leads to instability in α-Mg crystal. The Ca and Be diffuse in to the liquid Mg, which has lower environment-sensitive embedding energy than the solid,and congregate on the surface of liquid Mg as the alloys solidify. Because the atomic affinity energy of Ca-O and Be-O is lower than Mg-O,The Ca and Be aggregating on the surface of liquid Mg will priorly combined with O,forming compact oxides of Ca,Be and alloys of elements,which prevent Mg alloys from burning.

     

    目录

    /

    返回文章
    返回