By taking the strong two-photon absorption 4,4′-bis (dimethylamino) stilbene molecules as medium, the propagation of femosecond laser pulses in this medium is simulated by numerically solving the Maxwell-Bloch equations using an iterative predictor-corrector and finite-difference time-domain method. The influences of time-dependent ionization on two-photon absorption and optical power limiting behavior are emphatically investigated. The numerical results show that the nonlinear interactions between the pulses and the medium and the corresponding spontaneous emission become weaker when the time-dependent photoionization is considered. The effects of photonionization on the main pulse become more evident as the amplitude of input electric field is increased. When the photonionization cross section is larger, the dynamic optical limiting range becomes broader, which demonstrates that the limited photonionization ability is favorable for the optical power limiting. Furthermore, the propagating-distance dependence of the dynamical behavior of the ultrashort laser pulse in the medium is observed.