-
In optical remote sensing, the calibration of remote sensor plays a key role in the quantificational remote sensing. A state-of-the-art highest accuracy standard transfer method is developed, which can transfer the standard cryogenic radiometer to secondary standard trap-type detector, and the absolute spectral responsivity calibration system is set up in the band between the visible to near-infrared in our laboratory. It is required that the process of standard transfer should produce little measurement uncertainty. In this paper a Ti: sapphire tunable laser, doubler and single wavelength laser in 24 interval of wavelengths respectively are used, the spectral responsivity of three silicon trap detectors are calibrated absolutely. The key techniques involved are the accurate positioning and adjustment of the infrared laser and the simulation calibration of window transmittance etc., which have bean successfully resolved. The result shows, in the visible (412nm to 800nm) reqion, the total relative standard uncertainty of the spectral responsivity at the laser lines is less than 0.05%, while in the UV (350nm) and NIR regions above 800nm, the total relative standard uncertainty is less than 0.065%. So the trap detector can be used as a transfer standard detector for calibration of space sensors in the band of 350nm to 1064nm.







下载: