搜索

x
中国物理学会期刊

基于孔洞体胞模型铸造镁合金ML308的本构方程

CSTR: 32037.14.aps.58.79

Constitutive equation of casting magnesium alloy ML308 based on void-cell model

CSTR: 32037.14.aps.58.79
PDF
导出引用
  • 铸造镁合金不可避免地包含许多微孔洞,这些微孔洞在材料的后续加工及服役过程中将发生演化,并对材料的力学行为产生重要影响.基于球形孔洞体胞模型,提出微孔洞长大及形核方程,它们构成微孔洞的演化方程.根据孔洞演化将造成材料性质弱化的物理机制,将微孔洞演化以弱化函数的形式引入到非经典弹塑性本构方程,得到考虑孔洞演化的铸造镁合金弹塑性本构方程.发展与本构方程相应的有限元数值分析程序,用其模拟了铸造镁合金ML308的微孔洞演化及力学行为,计算结果与实验结果符合较好.

     

    Casting magnesium alloys are heterogeneous materials containing numerous voids. These voids markedly affect the mechanical behaviour of the materials. In this paper, a void-growth equation is obtained based on the analysis of a spherical void-cell model, and a void-nucleation equation is presented which is related to the increment of intrinsic-time measure. The evolution equation of the voids is obtained by combining the growth equation with the nucleation equation. The obtained void-evolution equation is incorporated into a nonclassical elastoplastic constitutive equation through introducing a softening function, thus obtaining a constitutive equation that involves a void evolution. A corresponding finite element procedure is developed and applied to the description of the rule of the void evolution and the mechanical behaviour of casting magnesium alloy ML308. Computed results are shown to be in satisfactory agreement with experimental data.

     

    目录

    /

    返回文章
    返回