The rare-earth doped phosphors Y2O3:Eu3+0.01and Y2O3:Eu3+0.01, Dy3+0.01 were synthesized by a high temperature solid-state reaction method. The phase structures of the phosphors were characterized by X-ray diffraction. The Eu3+and Dy3+doping does not change the crystal sructure of Y2O3, the Eu3+and Dy3+ ions enter into the host crystal lattice . The emission spectra due to 5D0→7FJof Eu3+show that Eu3+is the only luminescence center. There is no glow peak from Dy3+. The decay characteristics of phosphors Y2O3:Eu3+0.01, Dy3+0.01 follows the Double exponential distribution. The measurement of thermoluminescence reveals that the trap is generated by Eu3+. The Dy3+doping doesn’t change the trap depth, and helps the electrons escape from the trap, which induces long-afterglow luminescence.