搜索

x
中国物理学会期刊

空位的第一性原理及经验势函数的对比研究

CSTR: 32037.14.aps.59.3370

Comparative study of the first-principles and empirical potential simulation of vacancies in silicon

CSTR: 32037.14.aps.59.3370
PDF
导出引用
  • 利用第一性原理及Stillinger-Weber(SW),EDIP和Tersoff经验势函数对比研究了硅中单空位(V1)、双空位(V2)和六边形空位环(V6)的结构特性及形成能.讨论了经验势函数描述空位时的优点和缺点.结果发现,第一性原理方法可以精确描述空位的原子结构及能量特性,而短程有效的经验势函数无法描述空位所固有的量子效应,如Jahn-Teller变形等.另外,由于经验势函数自身的缺陷,EDIP和T3无法应用于空位结构特性的计算.虽然

     

    Structural properties and formation energies of monovacancy (V1), divacancy (V2) and hexavacancy (V6) in silicon have been comparatively studied with density functional theory (DFT), Stillinger-Weber (SW), EDIP and Tersoff methods. The validity and shortcomings of the three classical potentials are discussed in detail. It is found that the DFT method may provide accurate description of atomic structures and energies of vacancies. As to the empirical potentials, they cannot be used to investigate quantum mechanical effects such as Jahn-Teller distortion ocurring in the DFT relaxations. Moreover, EDIP and T3 give an outward relaxation in all cases, which is contrary to the DFT and SW directions. Therefore, they are unsuitable to the structural property calculations. Based on the results calculated mainly for structure properties and formation energies, it can be concluded that SW should be the best potential to describe V1, V2 and V6.

     

    目录

    /

    返回文章
    返回