搜索

x
中国物理学会期刊

Mg2+掺杂Zn2SiO4:Mn2+的溶胶-凝胶法合成及真空紫外发光特性研究

CSTR: 32037.14.aps.59.3558

Synthesis and luminescent properties of Mg2+ doped Zn2SiO4:Mn2+ phosphor under VUV excitation

CSTR: 32037.14.aps.59.3558
PDF
导出引用
  • 采用溶胶-凝胶法(sol-gel method)于不同气氛条件下成功合成了Zn1.92-xMgxSiO4:0.08Mn2+(0≤x≤0.12)系列粉末样品.利用X射线衍射(XRD)、光致发光(PL)谱等分析手段对Zn1.92-xMgxSiO4:0.08Mn2+系列

     

    A series of phosphors of Zn1.92-xMgxSiO4:0.08Mn(0≤x≤0.12)were successfully synthesized at various heating atmosphere via sol-gel method. The structure and luminescent properties of the samples were characterized by X-ray diffractometer (XRD) and the FLS920T Spectrophotometer, respectively. The results indicated that in the Zn1.92SiO4:0.08Mn system, the Mg2+ doped could substitute for the Zn2+ site and result in the decrease of lattice parameters. The absorption band of the MgO4 cluster was located at about 154 nm in vacuum ultraviolet region. Mg2+ ion doping has favorable influence on the photoluminescence properties of Zn2SiO4:Mn2+, the optimum concentration of Mg2+ being 0.06 mol under 147 nm excitation. The emission intensity of Zn1.92-xMgx SiO4:0.08Mn2+ phosphors calcined in the mixture of nitrogen and hydrogen were stronger than those of the phosphors calcined in other heating atmospheres, and the emission intensity of Zn1.86Mg0.06SiO4:0.08Mn2+ calcined in the mixture of N2 and H2 was 113% of that of Zn1.92SiO4:0.08Mn2+, being 5% higher than that of commercial phosphor. After Mg2+ doping the decay time of phosphor was much shortened and the decay time of Zn1.86Mg0.06SiO4:0.08Mn2+ was 3.89 ms, which was shorter by 1.33 ms than that of commercial product.

     

    目录

    /

    返回文章
    返回