搜索

x
中国物理学会期刊

自旋极化有机电致发光器件中单线态与三线态激子的形成及调控

CSTR: 32037.14.aps.59.3564

Formation and manipulation of singlet and triplet in spin-polarized organic light-emitting devices

CSTR: 32037.14.aps.59.3564
PDF
导出引用
  • 由于有机半导体(OSC)材料自旋弛豫时间长、自旋扩散长度大,OSC自旋器件逐渐成为研究热点.对于有机电致发光器件(OLED),通过自旋极化电极调控单线态和三线态激子比率是提高其效率的有效方法.本文从漂移扩散方程和载流子浓度连续性方程出发,结合朗之万定律建立了一个自旋注入、输运、复合的理论模型.计算了OSC中的极化电子、空穴浓度,得出了单线态和三线态激子的比率.分析了电场强度、自旋相关界面电导、电极和OSC电导率匹配和电极极化率等因素的影响.计算结果表明:两电极注入反向极化的载流子并提高载流子自旋极化率,有

     

    Organic semiconductor (OSC) devices based on manipulation of electron spin have attracted considerable attention since the discovery of long spin relaxation time and large transport distance in OSCs. For organic light-emitting devices (OLEDs), controlling the singlet to triplet ratio by spin-polarized electrodes is one of the effective ways to realize high luminescent efficiency. Based on the drift-diffusion equation, continuous equation and Langevin recombination theory, the spin injection, transportation and recombination properties of carriers in OLEDs are modeled in this paper. The density of polarized electrons and holes in OSCs are calculated, the singlet to triplet ratio is analyzed, and the influences of the electrical field, spin-related interfacial conductance, bulk conductivity and polarization of electrodes are accounted for. It is showed that opposite spin polarization of electrons and holes are in favor of increasing singlet to triplet ratio, and the higher spin polarization of injected carrier density is, the larger singlet to triplet ratio will be. Large spin-related interfacial resistance, large polarization of electrodes, matched bulk conductivity and high electrical field under forward bias favor spin polarization of carries density in OSCs. We can obtain obviously improved density polarization by optimizing the related parameters on the basis of essential injection efficiency. The optimized polarization ensures sufficient space for manipulating singlet to triplet ratio, hence the quantum efficiency of OLEDs.

     

    目录

    /

    返回文章
    返回