搜索

x
中国物理学会期刊

全固态八边形大模场光子晶体光纤的设计

CSTR: 32037.14.aps.59.4036

Design of all-solid octagon photonic crystal fiber with large mode area

CSTR: 32037.14.aps.59.4036
PDF
导出引用
  • 提出一种新型的全固态八边形大模场低损耗的掺镱石英光子晶体光纤,利用多极法对光纤的结构和特性进行了模拟.这种结构的光子晶体光纤空气孔由掺有少量氧化硼的石英棒代替,简化了制备过程,提高了光纤的热损伤阈值.在波长为1064 μm处,光纤的模场面积可达2000 μm2,还可实现单模传输,而且其弯曲损耗很小,当弯曲半径为5 cm时弯曲损耗小于05 dB/m.这种光纤对光纤激光器和光纤放大器的发展有重要意义.

     

    In this paper, a novel all-solid octagonal Yb3+-doped photonic crystal fiber (PCF) with large mode area and low loss is proposed. The air holes in the cladding are replaced by the B2O3-doped quartz rods,which increases the thermal damage threshold of the PCF and simplifies the fabrication process. The properties of the PCF are investigated by multi-pole method. Simulation results show that the effective mode area of this PCF is up to 2000 μm2, and the bending loss for a bending radius of 5 cm is as low as 05 dB/m at 1064 μm. Also, this PCF can support effectively single-mode operation. The design results of this paper are highly meaningful for the development of fiber lasers and fiber amplifiers.

     

    目录

    /

    返回文章
    返回