搜索

x
中国物理学会期刊

γ射线辐照下多壁碳纳米管结构转变过程研究

CSTR: 32037.14.aps.59.447

Structural transformation of multiwalled carbon nanotubes under γ-ray irradiation

CSTR: 32037.14.aps.59.447
PDF
导出引用
  • 采用60Co γ射线辐照纯净的多壁碳纳米管,用高分辨透射电镜和拉曼光谱,研究了多壁碳纳米管由石墨结构向无定形结构转变的演化过程.发现在γ射线辐照下,碳纳米管的外部石墨层逐渐失去最初的有序结构而向无定形结构转变.而且,随着γ射线辐照剂量的增加,无定形结构不断推进,而石墨层结构则不断减小,直至使整个碳纳米管变为一个中空的无定形纳米线结构.用原子位移理论和溅射机理对这种转变过程进行了分析.γ射线轰击碳纳米管击出碳原子,碳原子停留在晶格的间隙位置上产生间隙原子,在它原来的平衡位置则留下一个空

     

    Purified multiwalled carbon nanotubes (MWCNTs) were irradiated by 60Co γ-ray with different doses. The structural change of the MWCNTs was revealed by high-resolution transmission electron microscopy and Raman spectroscopy. It was found that under γ-ray irradiation some amorphous structure homogeneously covers the inner tube walls with graphite structure in irradiated MWCNTs. Moreover, the amorphous structure continuously proceeds and the graphite structure is reduced during the γ-ray irradiation till the irradiated MWCNTs become amorphous nanowires with a hollow structure. Based on the interaction between photons and carbon nanotubes, the structural transformation process and the corresponding mechanisms are discussed. In MWCNTs, the collision of a photon with a carbon atom will result in displacement of the atom, i.e. formation of a vacancy (single- or multi- vacancy) and a number of primary knock-on atoms which, if their energy is high, leave the tube or displace other atoms in the MWCNTs. If their energy is low, they can be adsorbed onto the tube walls. These adsorbed atoms play the role of interstitials. All the displaced atoms can be sputtered from the MWSNTs. The carbon atoms sputtered from the MWCNTs can further create some damage in a nearby MWCNTs or be absorbed onto its surface. Along with the simple defects, a number of more complex defects can be formed. The behavior of complex irradiation-induced defects is governed in part by annealing and diffusion of original defects-vacancies and interstitials. The γ-ray irradiation induced structural transformation of MWCNTs was a unique graphite to amorphous structural transition from the outer walls to the inner walls of the irradiated MWCNTs due to the removal of carbon atoms by knock-on displacements.

     

    目录

    /

    返回文章
    返回