-
基于互连网络的RLC π型等效模型,考虑电感的屏蔽作用和非理想的阶跃激励,提出了互连线网络在斜阶跃激励下的焦耳热功耗计算方法,极大地简化了互连网络中电流和功耗的表达式. 基于90 nm金属氧化物半导体(CMOS)工艺的互连参数对所提出的计算方法进行了计算和仿真验证,对于上升信号小于1 ns的情况,计算结果与Hspice仿真结果的误差小于3%,具有很高的精度,适合应用于大规模互连网络中的功耗估算和热分析.
-
关键词:
- 互连线 /
- 焦耳热 /
- 动态功耗 /
- RLC π型等效模型
With the integrated circuits processing stepping into nanometer scale, the interconnect Joule heat becomes significantly large. Based on the RLC π equivalent circuit, this paper proposes a novel accurate model to evaluate Joule heat power of interconnected line in VLSI. The shielding effect of the inductor and the non-ideal step stimulation are considered in the proposed model. The power consumption of a typical interconnected topology in 90 nm complementary metal-oxide semiconductor process is computed. The error between results of this proposed method and Hspice simulation is within 3% when the input signal’s delay time is within 1 ns. The proposed model can be used to estimate Joule heat consumption where rough heat control is needed, such as route structure in the network on chip.







下载: