搜索

x
中国物理学会期刊

mKdV方程的双扭结单孤子及其稳定性研究

CSTR: 32037.14.aps.59.7564

Single soliton of double kinks of the mKdV equation and its stability

CSTR: 32037.14.aps.59.7564
PDF
导出引用
  • 基于双曲函数法的思想,通过选择新的展开函数,得到了modified Korteweg-de Vries (mKdV) 方程的几类精确解,其中一类为具有扭结—反扭结状结构的双扭结单孤子解. 在不同的极限情况下,该解分别退化为mKdV方程的扭结状或钟状孤波解. 文中对双扭结型孤子解的稳定性进行了数值研究,结果表明:在长波和短波简谐波扰动、钟型孤立波扰动与随机扰动下,该孤子均稳定.

     

    Based on the idea of the hyperbola function expansion method, some analytical solutions of the modified Korteweg-de Vries (mKdV) equation are obtained by introducing new expansion functions. One of the single soliton solutions has a kink-antikink structure and it reduces to a kink-like solution and bell-like solution under different limitations. The stability of the single soliton solution with double kinks is investigated numerically. The results indicate that the soliton is stable under different disturbances.

     

    目录

    /

    返回文章
    返回