Most work on manifold study focuses on two-dimensional manifolds and there have been proposed some good computing methods. However, the computation of two-dimensional manifold is still a hot research field. In this paper the two-dimensional manifold of hyperbolic equilibria for vector fields is computed by combining self-adaptive parameter with trajectories continuation, approximating the local manifold with an ellipse around the equilibria, extending the trajectory with equal distance, and adjusting the trajectory with self-adaptive parameter. This method is more accurate than the "trajectories and arc-length method", and better shows the trend of the manifolds than the "box covering method".