搜索

x
中国物理学会期刊

源、漏到栅距离对次亚微米ggNMOS ESD保护电路鲁棒性的影响

CSTR: 32037.14.aps.59.8063

Effect of distances from source or drain to the gate on the robustness of sub-micron ggNMOS ESD protection circuit

CSTR: 32037.14.aps.59.8063
PDF
导出引用
  • 基于对静电放电(electrostatic discharge,ESD)应力下高电压、大电流特性的研究,本文通过优化晶格自加热漂移-扩散模型和热力学模型,并应用优化模型建立了全新的0.6 μm CSMC 6S06DPDM-CT02 CMOS工艺下栅接地NMOS (gate grounded NMOS,ggNMOS)ESD保护电路3D模型,对所建模型中漏接触孔到栅距离(drain contact to gate spacing,DCGS)与源接触孔到栅距离(source contact to gate sp

     

    In this paper,based on the research of the features about high voltage and high current under electrostatic discharge(ESD),the new 3D model of 0.6 μm gate-grounded NMOS(ggNMOS) ESD protection circuit with CSMC 6S06DPDM-CT02 CMOS technology have been derived from the optimization of lattice self-heating drift/diffusion model and its thermal model; systematic study about the effect of drain contact to gate spacing(DCGS)and the source contact to gate spacing(SCGS)on the relative protection circuit robustness index(turn-on voltage,breakdown voltage,self-heating peak,etc)have been done based on this model. The simulation results show that turn-on voltage and thermal balance are not influenced by the change of DCGS and SCGS,and compared to SCGS,DCGS is more sensitive to the breakdown voltage and the self-heating peak value of protection circuit. To improve the robustness of ESD protection circuit,it is not appropriate to monotonic increase the DCGS and SCGS for the reason that the breakdown voltage cannot be increased and the self-heating peak value of devices cannot be reduced by increasing DCGS and SCGS continuously. Compared to the TLP test results of 0.5 μm and 0.6 μm CMOS,a better reflection about the trend of electrical and heating features is derived from the simulation results,and the conclusions and test results are fully consistent. The reference for sub-micrometer ggNMOS ESD protection circuit layout parameter can be provided by the study.

     

    目录

    /

    返回文章
    返回