搜索

x
中国物理学会期刊

受扰统一混沌系统基于RBF网络的主动滑模控制

CSTR: 32037.14.aps.60.010510

Active radial basis function sliding mode controller for unified chaotic system with disturbance and uncertainties

CSTR: 32037.14.aps.60.010510
PDF
导出引用
  • 针对受外扰影响的统一混沌系统,提出一种基于径向基函数(RBF)神经网络的主动滑模自适应控制方法.将被控系统分解为受控子系统和自由子系统,利用主动控制思想,建立受控子系统在目标点处的状态误差的可控标准型,设计出一个结构简单的基于滑模趋近率在线参数整定的RBF函数神经网络控制器,并且基于Lyapunov稳定性理论分析了系统的稳定性.仿真结果表明该控制器对系统参数突变和外部干扰具有鲁棒性,同时抑制了抖振.

     

    An adaptive active radial basis function (RBF) sliding mode controller is designed to control a unified chaotic system with parametric uncertainties under external disturbance. The controlled system is divided into a controllable subsystem and a free subsystem. Based on the controllable canonical form of controllable sub-systems state errors at the target points, a sliding surface is defined as the only input to the RBF controller. The weight of the controller is tuned on-line based on the sliding mode reaching law. The simulation results show that this method is applicable and effective, and the robustness to parametric uncertainties and external disturbance is provided. And the chattering of conventional sliding controls doesn’t occur.

     

    目录

    /

    返回文章
    返回