搜索

x
中国物理学会期刊

双层喷气Z箍缩氖等离子体K层辐射研究

CSTR: 32037.14.aps.60.015203

Study on K-shell X-ray production of double-shellneon gas puff Z-pinch

CSTR: 32037.14.aps.60.015203
PDF
导出引用
  • 报道了"强光一号"(1.6 MA,70 ns)加速器驱动双层喷Ne气Z箍缩负载产生K层辐射(光子能量约1 keV)的实验研究.喷气负载出口半径为1.5—1.4 cm和0.75—0.6 cm(半径比2 ∶1).充气压力相同情况下外层和内层质量比约2.8 ∶1.在内爆时间约120 ns、负载线质量估计值60—70 μg/cm时,获得K层辐射产额约7 kJ、峰值功率0.28 TW,脉冲宽度20 ns.X射线分幅图像表明内爆阶段的不稳定性影响较小,最终内爆速度超过25 cm/μs,等离

     

    The main results of investigation on K-shell X-ray production of double-shell neon gas puff Z-pinch, driven by Qiangguang-I facility (1.6 MA, 70 ns), are reported. The exit radii of the outer and inner shells are 1.5—1.4 cm and 0.75—0.6 cm, respectively. Both shells have a throat width of 0.32 mm, while the ratio of the throat radii is 2.8 ∶1, to which the mass ratio would be approximately equal for identical plenum pressures. K-shell yield and peak power up to 7 kJ and 0.28 TW, respectively, for a 20 ns full width at half maximum pulse have been obtained with about 120 ns implosions, the load mass per unit length of which are estimated to be 60—70 μg/cm. Time-resolved X-ray images show that RT instability during the implosion stage has been well suppressed, resulting in a final pinch diameter compressed to less than 2.5 mm. The final implosion velocity exceeds 25 cm/μs. K-shell yields and peak powers are largely reduced with longer implosion time. For shots with lower mass, i.e. 28—63 μg/cm, the electron temperature inferred from time-gated K-shell spectra should be greater than 500 eV, implying an overheated plasma column being formed in the stagnation stage. While for shots with load mass of 72—80 μg/cm, time resolved electron temperatures are in the range of 300—400 eV. The inferred ion densities of the K-shell emitting region are in the range of (3—9)×1019 cm-3, which have been used to calculate the mass fractions that contribute to K-shell radiation. Those shots with near 7 kJ yields also have maximum K-shell emitting load mass (about 46 μg/cm).

     

    目录

    /

    返回文章
    返回