搜索

x
中国物理学会期刊

多孔SiO2包裹磁性纳米颗粒Fe3O4的制备与表征

CSTR: 32037.14.aps.60.017501

Preparation and characterization of magnetic nanoparticles of Fe3O4 coated with mesoporous SiO2

CSTR: 32037.14.aps.60.017501
PDF
导出引用
  • 采用加热分解油酸铁法制备了Fe3O4磁性纳米颗粒,并用有机模板和反相微乳液相结合的方法将磁性纳米颗粒包裹在多孔二氧化硅中.用红外光谱(FTIR)研究了不同的处理方式对油酸铁表面官能团的影响及油酸的反应浓度和加热分解油酸铁的过程中升温速率对Fe3O4纳米颗粒的影响.结果表明,用乙醇和丙酮处理后的固态蜡状油酸铁表面的油酸基团会受到损害,将不利于加热分解时形成单分散性的Fe3O4纳

     

    We prepared the magnetic nanoparticles of Fe3O4from thermal decomposition of the Fe oleates precursors synthesized by iron chlorides and sodium oleate,and the SiO2-coated Fe3O4nanoparticles by combining the reverse microemulsion and organic template methods. FTIR was adopted to investigate the surface of Fe oleate under different treatments,and the growth of Fe3O4 nanoparticles with different reactant concentrations of oleic acid and heating rates. The results indicated that the superficial oleic acid of the waxy solid Fe oleates after extraction from ethanol and acetone was partially removed,which impairs the formation of monodispersion Fe3O4 naoparticles. The effect of heating rate on the growth of nanoparticles was weak compared with that of the concentration of Fe oleates. When the concentration of oleic acid is 0.09 mol/L, a characteristic peak of Fe3O4 at 576 cm-1(assignable to the bending vibrations of Fe-O) is enhanced significantly. The XRD (X-ray diffraction) spectra,TEM (transmission electron microscopy) images and SQUID (superconducting quantum interference device) confirmed that the Fe3O4 nanoparticles are spinel cubic crystal and have a good monodispersity and super-paramagnetism. Whats more,the TEM of SiO2-coated Fe3O4 nanoparticles also confirmed that the Fe3O4 nanoparticles were well coated by mesoporous SiO2.

     

    目录

    /

    返回文章
    返回