-
研究了一类周期变化的非线性复杂发病率的广义流行病学模型(SIR(susceptible, infected, recovered)模型). 通过一系列坐标变换将原模型转化为Hamilton系统,运用Melnikov方法证明了该系统存在混沌运动,给出了发生同宿分岔的条件,并用数值模拟验证了上述结果.
-
关键词:
- SIR(susceptible /
- infected /
- recovered)模型 /
- 混沌运动 /
- Melnikov方法 /
- 同宿分岔
We study the well-known SIR (susceptible, infected, recoverd) model with nonlinear complex incidence rates. Firstly,a series of coordinate transformations are carried out to change the equations as the amenable Hamiltonian systems. Secondly the Melnikov's method is used to establish the conditions of existence of chaotic motion and find the analytically critical values of homoclinic bifurcation. Good agreement can be found between numerical results and analytical results.-
Keywords:
- SIR(susceptible /
- infected /
- recoverd) model /
- chaotic motion /
- Melnikovs method /
- homoclinic bifurcation







下载: