搜索

x
中国物理学会期刊

基于OH自由基A2Σ + →X2Πr 电子带系发射光谱的温度测量技术

CSTR: 32037.14.aps.60.053302

Emission spectra of OH radical (A2Σ+→X2Πr) and its application on high temperature gas

CSTR: 32037.14.aps.60.053302
PDF
导出引用
  • 本文基于OH自由基所固有的分子结构特征,通过分子光谱理论系统地分析和计算了OH自由基A2Σ + →X2Πr 电子带系发射光谱的谱线跃迁频率、能级分布以及爱因斯坦自发发射跃迁概率等重要参数.同时结合实际的光谱实验,分析了谱线的自然展宽、碰撞展宽、多普勒展宽以及仪器展宽等各种展宽因素对谱线线型的影响,从理论上计算了任意转动温度、振动温度以及谱线展宽条件下OH自由基A2Σ  

    Based on the inherent molecular structure characteristics of the OH radicals, the energy level distribution, the transition frequency and Einstein spontaneous emission transition probability are systematically analyzed and numerically studied. Meanwhile, combined with the spectra experiments, the natural broadening, collision broadening, Doppler broadening and instrumental broadening effects on spectral line shape are analyzed. The dependence of the spectral profile on the rotational temperature, the vibrational temperature, and the spectral function are numerically explored in certain ranges. The corresponding numerical results are also discussed for the emission spectra thermometry, which provides a theoretical basis for the emission thermometry. In experimental, the emission spectra of OH (A2Σ+→X2Πr) system of the hydrogen flames are recorded by the optical multi-channel analyzer and studied. By the fitting of the experimental spectra to the numerically calculated spectra, the corresponding rotational and vibrational temperatures of the hydrogen flames are determined, respectively.

     

    目录

    /

    返回文章
    返回