搜索

x
中国物理学会期刊

液态结构与性质关系Ⅱ——Mg-9Al熔体的运动黏度及与熔体微观结构的关系

CSTR: 32037.14.aps.60.056601

Relationship between liquid structure and property Ⅱ—— Kinematic viscosity of Mg-9Al melt and its relationship with the microstructure

CSTR: 32037.14.aps.60.056601
PDF
导出引用
  • 采用坩埚扭摆振动法测量Mg-9Al熔体的运动黏度,得到890—1190 K温区内高精度的黏度-温度关系曲线ν(T),发现升温过程中黏度随温度升高发生异常变化,当温度升高至1000—1075 K时,黏度由快速增大转变为逐渐减小,即发生转折变化;在随后的降温和第二次升温过程中,黏度随温度变化呈指数规律单调递增(减),符合Arrhenius方程式.在实验研究基础上,采用剩余键结构模型和"平均原子集团"演变行为的计算模型讨论Mg-9Al熔体的黏度与微观结构之间的相关性,结果表明:类 

    The method of crucible rotating oscillation damping is employed to measure the kinematic viscosity of Mg-9Al melt, and the curve of viscosity ν versus temperature T from 890 K to 1190 K is obtained. It is found that there is an abnormal change for the viscosity in the first heating process, i.e., when the temperature is increased to 1000—1075 K, the viscosity varies from increase to decrease. However, in the subsequent cooling process and the second heating process, the viscosity increases (decreases) monotonically according to an exponential law with temperature, which accords with the Arrhenius equation. Based on the residual bond model and the calculation model for evolution behavior of "average atomic cluster", the correlation between viscosity and microstructure of Mg-9Al melt is discussed. The results show that the breakage of Al-Al(B) bonds in basic unit of β phase-like residual bond structures causes an abnormal change of viscosity in the first heating process; in the subsequent cooling process and the second heating process, the melt reaches a new dynamic equilibrium state, and Al atoms are uniformly distributed in the melt. At this time, the size of Mg-Al average atomic cluster dS and the number of short-range order atoms NS inside them increase (decrease) monotonically with temperature, and the relationship between viscosity ν and size of average atomic clusters dS is expressed as a linear function, i.e., ν = ν0 + K·dS, which presents a new way for revealing micro-structure change of alloy melt and further understanding the change characteristic of viscosity.

     

    目录