搜索

x
中国物理学会期刊

金属Pd薄膜的超临界流体沉积制备及其结构表征

CSTR: 32037.14.aps.60.088103

Preparation and structure characterization of Pd thin films by supercritical fluid deposition

CSTR: 32037.14.aps.60.088103
PDF
导出引用
  • 用超临界流体化学沉积法以有机金属化合物为前驱物制备金属单质薄膜.超临界CO2为溶剂,六氟乙酰丙酮钯(Pd(Ⅱ)(hfac)2)为前驱物,在温度为100 ℃、压力为1218 MPa、反应时间为1020 h的条件下,经过H2气催化还原在单晶Si片上制备金属Pd薄膜,薄膜均匀且连续,厚度为0.31.5 m.经X射线光电子能谱和X射线衍射谱分析可知,沉积的薄膜为金属Pd单质晶体结构.扫描电子显微镜研究结果表明,沉积压力对薄膜的晶粒尺寸有很大

     

    Pd films are deposited on the Si wafers by the reduction of palladium(Ⅱ) hexafluoroacetylacetonate, which is used as the precursor, in the supercritical CO2 solution at temperature 100 ℃ and pressures between 12 and 18 MPa, and with reaction for 1020 h. The films are continuous, uniform and 0.31.5 m thick. The analyses of the Pd films by X-ray photoelectron spectroscopy and X-ray diffraction indicate that the structures of the deposited films are of single matter and nanocrystalline. The scanning electron microscope images show that pressure is a factor of affecting the size of the grain of the deposited film. At a pressure of 12 MPa, the size of grain is between 30 and 60 nm, at a pressure of 15 MPa, it is between 90 and 120 nm. Moreover, at a pressure of 18 MPa, it is between 150 and 180 nm. At the same temperature, with higher pressures, the size of the grain is bigger. On the same conditions, Pd thin films are deposited on the inner and the outer surfaces of cylindrical cavity.

     

    目录

    /

    返回文章
    返回