搜索

x
中国物理学会期刊

带凹槽的微通道中液滴运动数值模拟

CSTR: 32037.14.aps.61.034701

Numerical simulation of a droplet motion in a grooved microchannel

CSTR: 32037.14.aps.61.034701
PDF
导出引用
  • 运用改进的耗散粒子动力学方法模拟了液滴在由凹槽所构成的粗糙表面微通道内的运动行为.改进的耗散粒子动力学方法采用新近提出的一种短程排斥、长程吸引相互作用势能函数,从而可以模拟带有自由面的流体,如液滴等.模拟了新势能函数下液滴与固体壁面的静态接触角,并用2次多项式拟合了接触角-awf/af变化曲线.研究了液滴在带凹槽的微通道中运动时,微通道壁面浸润性、外场力、液滴温度对液滴流动特性的影响.研究表明壁面浸润性和外场力对液滴流动特性的影响较大,液滴温度对液滴流动特性的影响较小.研究结果对运用耗散粒子动力学方法模拟并分析微流体在复杂微通道的流动有一定的参考价值.

     

    In this paperan improved dissipative particle dynamics(DPD) method was applied to simulate droplet motion in a grooved microchannel. The improved DPD method adopted a recently proposed combination of short-range repulsive and long-range attractive interaction, which can simulate fluid flows with free surfaces, such as droplet motions. The static contact angle between the droplet and the solid wall was simulated with the new potential function, andstatic contactangle~awf/af curve was obtained by Polynomial fit of the 2nd order. The influences ofwall wettability, flow field force, droplet temperature on the flow pattern of droplet in the grooved microchannel were investigated. The results showed that wall wettability and flow field force have large affectson the flow pattern of the droplet, whiledroplet temperature have little affectson it. This article is helpful to understand the fluid flow behavior with free surfaces on rough surfaces.

     

    目录

    /

    返回文章
    返回