-
采用密度泛函理论(DFT)中的B3LYP方法, 在LANL2DZ基组水平上, 优化了C19M(M=Cr,Mo,W)团簇的几何结构, 得出了它们的基态构型, 并研究了基态结构的物理化学性能.结果表明: 不同的M原子替换后, C19M的动力学稳定性相差不大, 而热力学稳定性随着M原子序数的增加而逐渐升高; 通过对C19M的前线轨道分析发现, M原子对各个轨道均有一定的贡献, M原子对各个轨道的贡献大致随着M原子序数的增加而增加, C19M中金属原子M(M=Cr,Mo,W)上集中了大量的正电荷; C19M的芳香性随着M原子序数的增加而减弱.The possible geometrical structures of C19M(M=Cr,Mo,W) molecules are optimized by using the density functional theory (B3LYP) at the LANL2DZ level. For the ground state structures of C19M(M=Cr, Mo, W) clusters, the physical and the chemical properties are studied. The results show that the kinetic stabilities of the C19M clusters with different M atoms are almost the same. Theis thermodynamic stabilities are obviously increased with the increase of atomic number. It can be found from the frontier orbital that the M atoms have the effects on the orbits more or less. M atom contribution to the orbits roughly increases with M atomic number increasing. A great many of positive charges accumulate on the M atoms in C19M clusters. Their aromaticity decreases with the increase of atomic number.
-
Keywords:
- heterofullerenes C19M /
- structure and stability /
- electronic property /
- density functional theory







下载: