搜索

x
中国物理学会期刊

任意Atwood数Rayleigh-Taylor和 Richtmyer-Meshkov 不稳定性气泡速度研究

CSTR: 32037.14.aps.61.075207

The bubble velocity research of Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers

CSTR: 32037.14.aps.61.075207
PDF
导出引用
  • 本文将Layzer气泡模型推广到任意界面Atwood数情形,得到了自洽的微分方程组.该模型描述了气泡从早期的指数增长阶段到气 泡以渐近速度上升的非线性阶段的发展过程,给出了Rayleigh-Taylor(RT)和Richtmyer-Meshkov(RM)不稳定性的二维和 三维气泡速度渐近解,还求出了二维和三维RT不稳定性气泡顶点附近速度的解析解.

     

    We generalize the Layzer's bubble model to the cases of two-dimensional and three-dimensional analytical models of an arbitrary interface Atwood number and obtain self-consistent equations. The generalized model provides a continuous bubble evolution from the earlier exponential growth to the nonlinear regime. The asymptotic bubble velocities are obtained for the Rayleigh-Taylor(RT) and Richtmyer-Meshkov(RM) instabilities. We also report on the two-dimensional and the three-dimensional analytical expressions for the evolution of the RT bubble velocity.

     

    目录

    /

    返回文章
    返回