搜索

x
中国物理学会期刊

空间变尺度因子球坐标系与四维时空度规

CSTR: 32037.14.aps.61.080401

Variable space scale factor spherical coordinates and time-space metric

CSTR: 32037.14.aps.61.080401
PDF
导出引用
  • 时空度规是广义相对论的一个基础性概念,是宇宙学和天体物理学建立模型的逻辑基础.将随时序参数变化的空间尺度 因子函数引入相对论四维时空间隔模型,研究空间球对称形式的四维平直时 空度规、Schwarzschild度规、Robertson-Walker (R-W)度规之间的变换条件.基于空间变尺度因子球坐标系的时空间隔, 通过严格的计算,推导出R-W度规中与k=1对应的尺度因子函数解析解,还推导出星球外非真空条件下的四维时空度规. 提出了一种理解现代物理学非平直时空模型的新视角.

     

    The time-space metric is a fundamental concept of general relativity, and it is the logical foundation of cosmology and astrophysics. A time-related space scale factor is introduced into a 4-dimensional time-space interval model. The transformations among the flat metric, the Schwarzschild metric and the Robertson-Walker (R-W) metric are obtained in spherical coordinate system. Based on the time-space interval of the time-related scale factor coordinate, the solutions of R-W metric with parameter k=1 and the non-vacuum metric outside stars are deduced. A new point of view is advanced to comprehend the modern physical non-flat time-space.

     

    目录

    /

    返回文章
    返回